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As an npg xination to the problem of determining the maximum
of J(y) = /

o
relations, we ma

(x,y)at, where x and y are connected by certain
consider the question of determining the
N

« I P(x(x), y(k)), where x(k) = x( 52 ),
k=0

y(k) = y( ;I‘_ ). &a this paper g® considersthe convergence of
|
the discrete sum as N—m , independently of the continuous

maximum of J( ¢y |

process. Convergence is estadlished, using the functional

equation technique of the theory of dynamic programming, under

weaker conditions than those required by the classical calculus

of variatione.
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FUNCTIONAL BQUATIONS IN THE THEORY OF
DYNANIC PROGRAMMING—VI
A DIRECT CONVERGENCE PROCF

By
Richard Bellman

1. Introduction

A class of variational problems arising fre uently in
both theory and application involve the maximization of a
functional of the form
T
(1) J(y) = ./ P(x,yldt,

(0]

subject to relations cf the form

(2) () § = 6(x,y), x(0) = c,
(¢) K (x,y) <0, 11,2, ..., K.

Here x and ¢ are N—dimensional vectors, while y 1s an
M—dimensional vector function. The maximization i1s over y.
Since solutions of problems of this type are only in rare
instances obtainsble in explicit form, recourse must be had
to some ty,e of approximate solution 1f we are interested
in numerical results. A method going back to Euler consists
of approximating to the .ntegral in (1) by a sum of the form
(3) Ja(y) -kzo oF (x(k), y(x)),

and to the relations in (2) by the relations
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(4) (a) x(k+1)ex(k)+a0(x(k),y(kx)),x(0)=e,k=0,1,...,n,
() Ry (x(k),y(x))<0,
where
(5) (‘) 4 = T/nl
(b) x(k) e x(kT/n), y(k) = y(kT/n).

Under various assumptions concerning the functions P,

G and R, it can be shown that

(6) lim Max J,(y) = Max J(y),
P00 (Y} y

or

(1) lim Max J,(y) = Sup J(y).
n—® Jy} y

Here the maximization on the left-hand side is over all

(n + 1)—dimensional sequences [y(0). y(1),...,y(N)].

An essential feature cf the previous proofs of resulte
of this nature is the use of the formulation of the eontinuous
variational process and the existence of a solution. A proof
of this type requires relatively strong assumptions concerning
the benavior of F and G. In this paper we wish to begin the
study of convergence proofs which are independent of the continuous
version, and depend only upon the discrete version.

We are interested in imposing relatively weak conditions

upon the functions P(x,y) and G(x,y) which will permit us to

.,
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conclude that the limit
(8) 1im  Max Jy(y) = J,

n—® iy}
exists as n—a@ through some sequence of integers. It 1is
probably true that this limit will not exist under the sole
assumption of continuity of P and G, together with some simple
constraint such as the uniform boundedness of y, although we
know of no example of this. We find it necessary to impose
Lipschitz conditions of the form |P(x,y) - P(z,s)| ¢ kilx - 2|2

for all admissible y, where a2

+ a > 1. Again we do not know
whether thls result is best possible.

Apart from the fact that the convergence of the above
expression can be established by the methods we present below
under lignter conditions than are imposed in the classical
calculus of variations, the interest in these results lies (n
the fact that the techniques we employ apen a path to a similar
treatment of other types of variational ,rovlems.

As we shall see in subsequent parpers, eligenvalwe prodblems
of one—dimensional and multi—-dimensional ty,e, as well as multi-
dimensional variational problems of otler types, may be treated
by these metnods.

Purthermore, multi{-stage games of continuous type, such
as jursuit games, ma, 2lso be discussed in tnis fasnion,
cf. [2). Here tnere is no classical tneory toc guide our
analysls, not even a rigorous formulation of the continuous

process, nor even the conceyt of a solution.
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In what follows, we shall rely upon the functional equation
approach of the theory of dynamic programming, [1], applied
to the discrete maximization problem. The results of this paper
are self—contained, and require no previous knowledge of either
variational theory or dynamic programming.

Finally, let us note in passing, that the method used
affords a new approach to the computational solution of varia—
tional problems, and a new approach to the determination of
analytic properties of the solution such as monotonicity,

concavity, and so on.

§2. Punctional Equations

In the section following this, we shall discuss various
conditions which we can impose upon F, G and R in order to
ensure the existence of a maximum in the discrete version.

In this section let us proceed upon the assumption that the
maximum is attained, and derive the recurrence relations we
shall employ to establish convergence.

It 18 clear to begin with that the maximum of J,;(y),
as defined by (1.3), will be a function only of ¢ and n. Let
us keep 4 fixed, equal to T/n, and define, for k = 0,1, 2, ..., n,
the sequence of functione

4
(1) rlc) =mMax [z P(x(3),y(3))],
y! J=0

where x(.:) and y(J) are subject “o the relations
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(2) (a) x(J+1)=x(Jy)+aa(x(y),y(J)),x(0)=c,y=0,1,2,...,k,
(b) R, (x(3),y(J))g0, k=1,2,...,K,

and the maximization {s now over the finite set of vectors
y(0),y(1),...,y(x)].

Let us now consider this maximization problem as an n-stage
decision process, with the state variablee c and k. BEmploying
the principle of optimality, cf. [1], 1t 1s easy to derive

the recurrence relations

(3) rk+1(°)'"?3) [aF(c,y(0))+r, (c+aa(c,y(0))],
y

with

4 - , .

(¥) fole) = Max ar(e,3(0))

The vector y(O) is to be chosen in each case subject to

the constraints
(=) R,(c,y(0)) ¢ 0, 1 =1,2, ..., K.

The remainder of the convergence proof will be based upon

this recurrence relation without further reference to its source.

d3. Conditions Upon P, 0 and R

Since the method we shall employ is independent of the
dimensions of the vectors x and y, there {s no loss of
generality in taking x and y to be scalar uantities. This

will allow us to substitute the usual absolute value notation
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e

for the more distracting norm notation.
We shall assume that P(x,y) and G(x,y) are continuous
functions Jjointly in the variables x and y in some bounded

region of the (x,y)-plane. Purthermore, in order to ensure

that x(k) does not increase too rapidly, we shall impose a

constraint of the form
(1) [G(x,y)] < a(y)Ix]| + b(y),

upon G(x,y).

The point of greatest interest . : the type of constraint
to be imposed upon y. If we remove all constraints of the
form Ri(x'y) < O, we are in the realm of classical theory.

If we impose constraints such as

(2) —o<m <y <m<®,
or
(3) O¢vy(<rx,

a constraint which occurs naturally in various classes of multi-
stage allocation processes, we enter a region where relatively
little has been done in the classical theory apart froama the
establishment of various types of existence and unigqueness

theorems. J3ince there are greater analytic difficulties in

the way of analytic solutions in the case where constraints are
present, which means a greater dependence upon numerical teochniques,

we shall concentrate upon this case.
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If we set y = vx, we see that (3) becomes

(§) O¢v¢l,

a constraint of the type given in (2).
Finally we have to impose some conditions on the modulus
of continuity of the functions PF(x,y) and G(x,y). The simplest

is a uniform Lipschitz condition of the type
(5) IP(x4,y) - P(xa,¥y)| € kixy — xaol®,

for some k > O and a satisfying O C a ¢ 1, for all y satisfying
(2) and x;3, xa lying in some fixed interval fc,c]. Por our
convergence proof we shall impose a further condition upon a,

given below in (1) of &%,

¢4. Statement of the Principal Result

The main result we shall establish 1s

Theorem. Assume that

(1) (a) y satiefles a constraint —o < m, £y<m<<®.

(b) P(x,y) and G(x,y) are ointl continuous in x
and y in a region o orn - X < ¢,
my ¥ £ ma, a‘a'oatfff (3_!) in this region,
ror an a2 satlis ying a© + a >

(e) 10(x,y) < ay|x| + by in this region.

Under these conditions, the gequence irn(c)' converges to

a _fupction f(c,T) ap n—® through the sequence of values v2k§,

uniformly in an intervel {[—a,ca]C[—<:,c:], for T sufficiently

small, dependent upon the constants appearing above.
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The positive solution of 12 +a=11isa = (=1 0/5)/2;'.62.

Q5. A Lemma

We shall repeatedly use the following result.

Lemma 1. Let a(c,v), a*(e,v), f(c,v) and f'(c,v) be continuous

functions of v for ¢ and v in some region D. Define

(1) P(c) = Max [a(c,v) + f(c,v)]
v¢D

G(c') = Max [a'(c',v') + £'(c',v')].
V'SD

Then

(2) IP(c)—G(c')lgﬂzg (1a(c,v)-a*(c',v')|¢|r B,v)-r*(c',v)|].
L 4

Proof: Let v = v(c) be a value of v which yields the maximum

in the expression for P(c), and v' = v'(c'), the corresponding

expression for v'. Then
(3) P(c) = a(c,v) ¢+ f(c,v) > a(e,v') + f(c,v'),
G(c') = at(ct,v') + £2(ct,vt) > a(et,v) + £2(e,v).
From these inequalities we derive the further inequalities
(&) F(c) - G(c') > a(c,v') —a'(c'v') + f(e,v') - ' (c',v')
< afe,v) —a'(c',v) + f(c,v) = £'(e',v),

from which we obtain
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(s) IP(c)a(c')|cmax [|a(c,v')-a'(c',v')|+|f(c,v*)-L"(c',v')],

la(c,v)-a'(c',v)|+|r(c,v)-r'(c",v)]]
Thie, in turn, ylelds the inequwality in (2).

66. Uniform Lipschitz Conditions

We start out by assuming that PF(x,y) and G(x,y) satiefy
Lipschitz conditions in an interval [—c,,c;]. Starting with
c in an interval [—cgs,ca] at the beginning of an n—stage process,
we see that after one stage, we have an x-velue lying in the
interval —ca-AMax G(x,y) < x { ca + AMax G(x,y), where the
maximum may be taken over the fixed interval —; ¢ x < ©Ca,
my <y £ vVa. Continuing in this way, we see that the range
of x may increase with each stage of the process. This js why
we must start in an interval [—ca,ca)C[—i,c:], and why T
may be constrained.

Let b = Max G(x,y), and let us call the interval [y -
teA, c; + bkA] the kth interval. We choose T and 4 initially

80 that with ¢ in the initial interval, the n'"

interval 1s
contained in E—c;,c.]. In this way we preserve uniform bounds.
In some cases, where x(t) 1s decreasing as a function of t;
1.e., where G(x,y) < O for all x and y, we do not meet this
difficulty.
It 1s essential for our proof to establish a uniform

Lipschitz condition for the members of the sequence {rk(c)}.

Lemma 2. Consider the sequence (f, (c)i as defined by (2.3) and
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(2.4), under the conditions of the theorem of ¢4. PFor k =

O, 1, ..., n, we have

(1) £ (u) = £ ()| < mlu - w|®,

for v and w in the n - k + 1)"t interval, where a is independent

9£ u, w, k or 4.

Proof: The proof will proceed by an induction on k. We have

(2) f,(u) = Max aF(u,y),
y

fo(-) = Max AP(w,y'),
y ]

where y and y' satisfy the constrainte m, ¥y, y' € ms.
Applying Lemma 1, we obtain the inequality

(3) It (u) = £ (w)| ¢ Max &{F(u,y) — F(w,y)|
y

< Kju - wl 2.
Assrume that we have demonstrated that

(4 £, (u) = £, (w)] g Kalu~wi®,

for k =0, 1,2, ...,L, for uand w in the (n - k - l)'t
interval. Turning to the recurrence relation (2.3), and applying

Lemma 1, we obtain the relation

() £ u)=f (W) n;x[anr(u.w-r(-.y)l

+|rk(u¢ao(u.y))—rk(-«oo(-.y))l]-
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If u and w 1ie in the (n — k — 2)nd

interval, the points
u + AG(u,y), v + AG(w,y) will certainly te included in the

(n - x - 1)st interval.

(6) £, 01 () = £, () |<aK u—w|® 4K &[u+aG(u,y)—w—0G(w,y)|?

k+1
S(xk+K)Alu—u‘a+akaA2|u—ula,

for a fixed constant a,;.
This shows that we can take xk = agkK, for some constant
ag > 1. Since kA < nA = T, we see that we have a uniform

Lipschitz condition.

7. Stability.

We now wish to demonstrate a result concerning the sta-
bility of the sequence {rk(c)' under perturbations of the function
F(x,y).

Lemma 3. Consicer the two csequences

(1) Par(s) = ”:x (aF(c,v) + fk(c + AG(c,v))]
Freep(c) = Max [aF'(c,v) + P (c + aG(c,v))],
\4

with

(2) f (c) = Max &F(c,v),

Po(c) = Max AF'(c,v).
v

We have, under the hypotheses of the theorem
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(3) |F (c) = £, (c)| < ko Max Max |P(c,v) - f'(e,v)],
v c <
k
for k = 0, 1, 2, ..., n. The notation Max signifies that the

[
maximum is taken over the kth interval, a* defined above.

Proof: Let us proceed inductively. The result is clearly true

for k = 0. Assume that we have

(%) |F (c)-r,(c)| ¢ Lo Max Max |[F(c,v)-P'(c,v)],
v C
for k = 0, 1, 2, ..., K, and let us determine the form of

LK+1' Applying Lemma 1, we obtain the result

(5) lvm(c)-rk(c)lsncx (a[F(c,v)R' (c,v)|+|P, (c+a0)-r, (c+aa)|]

<{Max [AlP(c,v)—P'(c,v)|+LkA Max Max {F(e,v-
v A _
P'lg,v) ]
S(Lk + 1)a Max Max | P(c,w)-P'(c,v)].
V Crsl
Hence we may take Lk+l - Lk + 1.

3. Transplantation

The next step of the proof depends upon an idea which is
abstractly identical with one used by Polya and Schiffer in
a similar situation, and called by them 'tranaplan;ntion':
The basic idea is the following. Consider two multi-stage /

decision processes, having, in general, distinct optimal policiees.

Inequalities connecting the return functions of the two proces ’,"
may be obtained by interchanging the role of the optimal pg} ies,

using each in the other process. 7
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Sometimes, however, this procedure cannot be carried out,
since an optimal policy for one process need not be an admissible
policy for the other. Although something of this sort cccurs
below, we can circumvent the difficulty it causes by using
an interesting lemma concerning the convergence of sequences.

We shall employ the idea sketched above in the following
way in order to compare the process with intervals, or stages,
of length A& with the corresponding process where the interval
is of length 24. Consider the A—process under the additional
restriction that the choice of y(2k) must be the same as the
choice of y(2k + 1). It is clear that the return, i.e., value
of the maximum, that we obtain from this process will be less
than the return from the original A—process. On the other hand,
the return from this process should be, granted the principle
of wishful thinking, close to the return from the 24-process,
for 4 small.

Combining these results, we shall obtain an inequality
connecting the returns of the A— and 24—processes. This

inequality is strong enough to yleld convergence.

§9. Description of the 4— and 2A—process.

Let us now make the above remarks precise. To define the
26-process, the interval [0,T] 1s divided into equal intervals
of length 2A. Choices of y are made at the points O, 24, 44,
and so on.

The 46—procees 1s defined similarly, with intervals of
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length 4. Let ;rk(c)x denote the sequence of returns from the
b-process, as defined by the recurrence relations of (2.3)
and (2.4), and let \’gk(c)S denote the sequence of returns froa
the 260—process.

Let us now define the following intermediate process.
Tre interval length is 4, but the policies are restricted to
those which employ the same y—value at the points 2kd and
(2x+1)a. Let ngk(c)\ denote the sequence of returns obtained
{n this way. Then

(1) ho(c) « Max AF(c,y),
y

ng(c) = Max [&P(c,y) + &F(c + aG(c,y),y)
y

+ n_(c + 8G(e,y) + a0(c + aa(e,y),y)],

Ny .o(c) = Max [aP(c,y) + oF(c + a0(c,y),y)
y

+n,, (c+8G(c,y)+aG(c + a0(c,y),y)].

Here y {8 subt'ect to trhe constraint m, Yy < ma.

It 18 clear that

(2) ioete) < ry(e), k=0, 1, 2,

Let us now compare n2k(c) ith 8k(c)'

It {s easy to show that the sequence {h2k(c)t satisfies
the same ty e of uniform Lipschitz condition as that which we

derived for (f (c)t. Hence we may write



P.-764

11-8-55
152
(3) Nopsnle) = Max [eaF(c,y) + hy, (c + 28G(c,y)) + E(e,y)],
where
(4) B (e,y) | < az a8(3%8),
since
(5) hzk(c+AG(c,y)+AG(c+A0(c,y),y))-h2k(c+2AG(c,y)+0(A1+a))

.hgk(c+2AG(c,y))+0(Aa(l*a)}

Applying Lemma 3, we see that

a(l+a)-1

(6) Iy ()-8, (c) IS aa(na)a < aaT &°,

where b = a(l + a) —1 > O.
Combining (2) and (6), we obtain

(7) £, () — g, (c) > -aaTa’

Now let A—0 through a sequence &, 4/2, ..., A/er,...
Let the return from the kth stage of the AO—process be ui(c), the
return from the 2k stage of the %— —process be ug(c), and,
generally, the return from the 2rkth stage of the és —process
2
be ur(c).

From the inequality in (6) we conclude that
(8) u,y(e) 2 uple) — asT(a/2")®.

To complete the proof we require a result concerning the

convergence of sequences, which we will prove in the next section.
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610. A Result on Convergence

Let us establish the following result

Lemma 4. Let (35 be a sequence satisfying the following

conditions:

(1) (a) ® >M>a >a -b,

(b) b, >0, Zb_ < @ .

Then the sequence converges.

Proof: It 1s clear that the sequence !s uniformly bounded from
below. Let x,; and xz be two distinct cluster pointe, with

Upg converging to x,;, and uy converging to xa. Let My ¢ N; ¢ Mg,
with u"‘, qu close to x,, and uNa close to xz. Then, on one

hand,
N,
(2) u —uy > ~Z a_ > -¢€,
N, M, = KeM, K =
and on the other t.and,
Ma
(3) Upy — Yy 2R B R

Since ¢ can be made arbitrarily small, we nave x, x Xja.

§1l Conclusion of the Proof

Applying Lemma 4, we see thnat ur(c) converges as r—m to
a function f(c,s), where s « kT,n. Taking n sufficiently large,

we obtalin ap;roximations to a continucus function of s, r(c,s).
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